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Dislocation behaviour in ordered alloys in 
the presence of frictional forces 
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A detailed numerical analysis has been made of the passing of superlattice dislocations 
in the presence of frictional forces and the results compared with those for ordinary 
dislocations. In particular, it was shown that the behaviour of superlattice dislocations 
is similar to that of ordinary dislocations, only at very high frictional stresses or at 
very low vertical separations. It was also shown that dipole strength can be increased 
significantly by decreasing y, the vertical separation, until y reaches a critical value, Yc, 
when the cross-slip forces due to the internal stresses are sufficient to induce non-thermal 
cross-slip thus annihilating the passing dislocations. Edge dislocations, on the other hand, 
cannot annihilate themselves by climb, and hence, smaller vertical separation can be 
obtained increasing the dipole strength significantly. The effect of thermal and nonthermal 
cross-slip on the work-hardening of ordered alloys is discussed in detail. For the purpose 
of illustration, the calculations were made for FeCo. The results, however, are quite general 
and are applicable to all B2-structure alloys. 

1. In t roduct ion 
Because of the presence of antiphase boundaries 
(APB) the deformation in ordered single crystal- 
line alloys is mostly restricted to one or two 
slip systems [1-3]. Furthermore, in such alloys 
a recovery process like cross-slip is much more 
difficult since it involves the creation of high 
energy APB on the cross-slip plane [4, 5]. 
Hence, atomic ordering causes two pronounced 
changes in the macroscopic stress-strain be- 
haviour; it induces a high work-hardening 
though the slip activity is restricted to one or 
two slip systems [1-3], and it also induces 
large overshoot in the slip system, when single 
crystals are oriented for single slip [6]. Hence, 
ordered alloys are particularly suited to investi- 
gate the mechanism of work-hardening in metals 
and alloys where there is only a single slip 
system. The high work-hardening observed in 
such alloys was accounted for by Vidoz and 
Brown [7] and Schoeck [8, 9] as due to the 
creation of APB tubes when glide dislocations 
intersect forest dislocations. However, to date, 
there has been no convincing evidence showing 
the presence of such APB tubes in these alloys. 
On the other hand, it has been well documented 
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in the literature that most of the dislocations 
in ordered alloys are essentially locked as 
dipoles [1-3]. Though we do not rule out the 
formation of such APB tubes, nor their contri- 
bution to the work-hardening in ordered alloys, 
we believe, however, that most of the work- 
hardening results from the locking of passing 
dislocations as dipoles. With this in mind, a 
detailed analysis of the behaviour of disloca- 
tions passing one another on parallel slip 
planes in superlattices has been made [10, 11]. 
In particular, the analysis showed that dis- 
locations do not pass one another as a full 
superlattice dislocation if the vertical separation 
is below a critical value. For such small vertical 
separations, the stress to break a dipole is much 
greater than the stress necessary to create APB 
and, hence, splitting of the partials comprising 
a superlattice dislocation occurs in preference 
to dipole breaking. In view of the importance 
of such calculations to the theory of work- 
hardening, they have been extended to include 
large arrays of dislocations. In particular, cal- 
culations have been previously carried out for 
large arrays of dislocations in disordered alloys 
[12, 13] using frictional forces [14] to stabilize 
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these dislocations. Based on the results of such 
calculations, a work-hardening model [13] was 
presented for disordered alloys. This model was 
extended to the case of ordered alloys. However, 
a detailed understanding of the behaviour of 
passing dislocations in ordered alloys in the 
presence of lattice frictional forces is still 
lacking. In the present paper an analysis of the 
behaviour of passing dislocations in super- 
lattices in the presence of frictional forces is 
presented. We consider here only the case involv- 
ing a pair of superlattice dislocations in order 
to bring out most of the concepts involved. The 
treatment of larger arrays of superlattice dis- 
locations will be considered in a future study. 
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Figure 1 Equilibrium configuration of a superlattiee 
dislocation in the presence of frictional forces. 

2. Superlattice dislocations 
It was pointed out earlier [15] that there are 
two limiting equilibrium configurations for a 
superlattice dislocation in the presence of fric- 
tional forces, depending upon how the APB 
is formed. This point is illustrated in Fig. 1, 
where the force between two partials is plotted 
as a function of their separation, xa. Because of 
APB tension, the two partials spread apart to 
x~ = Xe, where their repulsive forces are equal 
to ~,, the APB energy. For  illustration, 7 of 
FeCo[16] is used in Fig. 1. In the presence of 
a frictional force corresponding to -rf, there are 
two equilibrium positions; one on either side 
of Xe. They correspond to the positions where 
the total force on each dislocation is equal to 
the opposing frictional force, and they are 
termed the limiting equilibrium positions. They 
are so called because any position between the 
two limiting positions is stable since the total 
force on each dislocation for such a configuration 
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is less than the friction force [14]. If  the fric- 
tional stress is greater than 7, the equilibrium 
corresponding to the upper limit (Xe2) tends 
to infinity, implying all values of xl  greater 
than Xel are stable. On the other hand, if 7 
tends to zero, corresponding to a disordered 
alloy, there is no equilibrium position between 
the two partials in the absence of frictional 
forces since there are only repulsive forces 
between the dislocations. In the presence of 
friction, however, there will be only one limiting 
equilibrium [15] corresponding to the lower 
limit, with the upper limit tending to infinity. 
Generally, for any ordered alloy, the lattice 
frictional forces are always less than 7 (that 
this may be so can be seen from the fact that 
the yield strength is less than 7 [17] and, hence 
there are always two limiting equilibrium 
positions and this fact has to be kept in mind 
when considering the behaviour of passing 
dislocations in ordered alloys in comparison 
with that of disordered alloys. 
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Figure 2 Schematic illustration showing the passage of a 
pair of superlattice screw dislocations. 

3. Pass ing  dis locat ions 
Fig. 2 shows, schematically, the passing of a 
pair of superlattice screw dislocations. The 
equilibrium configurations are determined as a 
function of x0 by minimizing the total energy of 
the system. The calculations are similar to that 
of a disordered alloy except for the contribution 
from the APB energy to the total energy. The 
calculations are done first with decreasing x 0 
and then with increasing x0. The calculations 
are also carried out with xl  corresponding to 
the lower limiting equilibrium separation, so 
that the results can be comparable to those of a 
disordered alloy [12]. In addition, the calcula- 
tions are done for infinite straight dislocations 
and thus are of two-dimensional character. 
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Fig. 3 shows the variation of x~ with x,  for 
different frictional stresses where the frictional 
stresses are expressed in units of [10 -4 pm/2~r]. 
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Figure 3 Variation of  xa with x 0 for a pair of  passing 
superlattice dislocations. 

Fig. 3 in particular shows the behaviour of pas- 
sing dislocations for y = 200&, where b is 
Burgers vector, which is large in comparison 
with the separation between the partials 
(xl/b = 17.5, Fig. 1). For a given frictional 
stress, x~ remains constant for a complete 
cycle; i.e., for decreasing and increasing x0 
(Fig. 3). The reason for this behaviour is that 
the internal stress due to unlike dislocations for 
such large y is significantly smaller than ~,, 
such that the separation between partials is not 
affected by passing. On the other hand, equi- 
librium configurations for the same y, change 
drastically with decreasing or increasing of x0 
for two pairs of dislocations in a disordered 
alloy [12] (i.e., when 7 = 0). The decrease of 
x~ in Fig. 3 with increasing frictional stress can 
be understood from Fig. 1, since we considered 
only the lowering limiting equilibrium for two 
partials. The force necessary for the dislocations 
to pass one another can be determined as follows. 
The total forces acting on dislocation 1 and 2 
for increasing x0 are given by 

F~ = F a I + F I F -  F a - f r  + 7 = 0 (1) 

F ~ = F Z I -  F i r -  F ~ -  F F - -  ~ = 0 (2) 

when U~ is the force acting on a dislocation i, 
due to internal stress; i.e., due to the stress 
field of other dislocations and Fa, F r  and y are 
forces due to applied stress, opposing frictional 
stress, and APB energy, respectively. As ex- 

plained earlier [12], FIF is a component of 
frictional force that is necessary to balance 
the internal repulsive forces. The force due to 
applied stress can be determined by combining 
Equations 1 and 2 to give 

Fa = - ( F F  + (Eli -t- F2I)/2) . (3) 

It is interesting to note that an exactly similar 
expression was obtained for dislocations in a 
disordered alloy [12]. Equation 3 may give the 
impression that the APB energy has no effect 
on the force necessary for the dislocation to pass. 
Fig. 3, however, shows that equilibrium con- 
figurations are much different due to the pre- 
sence of ~,. Hence, forces FII and F2I will be 
drastically affected thus 7 indirectly contribut- 
ing to Fa. This contribution can be seen in Fig. 
4 where the maximum elastic force; i.e., the 
maximum force due to internal stress (FII + F2~)/2 
is plotted as a function of frictional stress. 
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Figure 4 Variation of the max imum elastic force due to 
internal stress with frictional stress on passing disloca- 
tions in ordered and disordered alloys. 

The solid line represents that of the superlattice 
dislocations while the dotted lines represent that 
of the ordinary dislocations. Due to the presence 
of 7, the equilibrium separation, xl is much 
smaller than y. Hence, the dislocations behave 
as a superdislocation of Burgers vector 2b for 
all ranges of friction. Two pairs of ordinary 
dislocations also behave as superdislocations of  
Burgers vector 2b at very high frictional forces, 
provided the dislocations pass one another 
with minimum separation. Thus, at very high 
friction forces, the dislocation behaviour is 
similar in both ordered and disordered alloys. 
Thus, the above results give a basis for the 
assumptions made in the previous analysis 
[13]. At small frictional forces, however, the 
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Figure 5 (a) (b) and (c) Variation of xl with x 0 for a pair 
of passing supcrlattice dislocations. 

behaviour of  a pair o f  superlattice dislocations 
is much different from that o f  two pairs of  
ordinary dislocations as can be seen in Fig. 4. 
As the vertical separation decreases, the be- 
haviour o f  superlattice dislocations even at 
low frictional stress will be somewhat similar 
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to that of  dislocations in a disordered alloy and 
this is shown below. 

Fig. 5a, b and c show, respectively, the equili- 
brium configurations as a function of  x 0 for the 
vertical separations 10, 5 and 4b. From Fig. 1, 
the vertical separations are smaller than the 
equilibrium separation of  partials at zero 
frictional stress. These figures show a pro- 
nounced variation of  xl  with Xo, especially for 
small values of  x0. For such values, the internal 
stresses are much greater than the APB, and 
hence, x l  varies drastically with x0. Further- 
more, the above figures show that with an 
increase of  frictional force, the variation in Xx 
decreases and the dislocations behave more and 
more rigidly. For low frictional forces, the 
configurations for increasing x 0 are much 
different from those for decreasing x0. Similar 
results [10] were observed earlier for zero 
frictional stress. As x0 tends to infinity, for 
frictional stress much less than y, xx tends to 
two constant values, corresponding to increasing 
or decreasing x0, respectively. Further, these 
two constant values correspond to the two 
limiting equilibrium values (Fig. 1) and the 
reason for this is explained below. For decreasing 
x0, dislocations are selected at their minimum 
separation, and hence, x 1 corresponds to the 
lower limiting equilibrium. For increasing x0, 
dislocations 1 and 2 are brought closer after their 
separation, x~, has reached some peak value 
which is much greater than xe~ in Fig. 1. When 
dislocation 2 swings to dislocation l, the 
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equilibrium separation, xl, then corresponds to 
the upper limiting equilibrium. However, for 
frictional forces greater than 7, there is only 
one limiting equilibrium. In such cases, the 
equilibrium xl  in Fig. 5 for increasing x0 does 
not correspond to any limiting value. For  
frictional forces much less than the APB ten- 
sion the dislocations were found to follow the 
path given by the dashed line, when x0 is 
decreased after one cycle is completed. Also the 
same (dashed) x l - x  o curve is obtained if the 
dislocations are originally started with decreasing 
x0 with x~ corresponding to the upper limit. 
This shows that there will be only one set of  
curves for both decreasing and increasing x0 
for further cycling. Since for frictional stresses 
less than the APB tension, the equilibrium 
separation is always restricted between the two 
limits (Fig. 1), the equilibrium configurations 
in Fig. 5 are unique functions of  x 0 f rom the 
second cycle on and they are independent of the 
initial selection of x~. For  frictional forces 
greater than 7, however, the path of  x~ sensi- 
tively depends on the initial section of xt  since 
for such high frictional forces, the upper limit- 
ing equilibrium tends to infinity. This behaviour 
is identical to that of  a disordered alloy [12]. 
For  a disordered alloy, there is no unique passing 
behaviour for all of  the frictional stresses and 
the passing behaviour very much depends on 
the initial x l  selected. Fig. 5a, b, and c, show 
further that with a decrease of  y, x~ increases 
linearly with x0 at least at low frictional stresses. 
Such an increase is associated with the sticking 
of dislocations [10] 2 and 3 as a dipole while 1 
and 4 move apart. Since for such small separa- 
tions the dipole strength is much greater than 7, 
splitting of partials occurs in preference to the 
dipole breaking. As 7 tends to zero, the splitting 
occurs at larger y and in the limit of  7 = 0 
corresponding to a disordered alloy, splitting of 
arrays occurs for all y in the low frictional 
stress range. In fact, it was observed that dis- 
locations in a disordered alloy [12, 13] cannot 
pass one another as an array at very low fric- 
tional stress. Furthermore, when the frictional 
stress tends to zero, dislocations in a disordered 
alloy become completely unstable since they 
instantly form dipoles and repel one another. 
The presence of a frictional stress or 7, however, 

stabilizes these dipoles and dislocations can 
pass one another as an array. The present 
analysis, however, only applies to a pair of  
superlattice dislocations. For large arrays of 
superlattice dislocations, frictional forces are 
essential to stabilize them and the analysis of  
the passing behaviour of large arrays of  super- 
lattice dislocations is a subject of further 
investigation. 

I t  was shown earlier [10] that complete split- 
ting of partials occurs if the vertical separation 
is below a critical value. For separations greater 
than the critical values dislocation 2 swings 
back to dislocation 1 at some x0, and corres- 
pondingly xl  shows a sharp discontinuity. 
On the basis of the previous analysis [10] the 
critical separation y for FeCo was found to be 
greater than 4b. Fig. 5c, however, shows that 
even for y = 4b, complete splitting does not 
occur in FeCo and the shapes of the xl-Xo 

curves for increasing x0 are much different 
from those at zero friction [10]. For complete 
splitting in the presence of frictional forces 
the internal stress holding dislocations 2 and 3 
should be much greater than the sum of fric- 
tional stress and APB. Hence, separations much 
less than 4b have to be reached before com- 
plete splitting occurs. However, for such very 
small vertical separations, the cross-slip force 
will be enormously high and the dislocations 
can annihilate themselves by non-thermal cross- 
slip process* which will be discussed later. 

Fig. 6 shows the effect of  frictional stress on 
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Figure 6 Variation of the maximum elastic force due to 
internal stress with frictional stress on passing dis- 
locations in ordered and disordered alloys. 

*Here we use the term non-thermal process to indicate that a given process can take place without any aid from 
thermal energy; i.e., even at OK. This term should not be confused with terms such as athermal process which has 
been extensively used in the literature to indicate that the contribution from the thermal energy is insignificant in 
overcoming the given process. 
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the maximum elastic force on passing disloca- 
tions for y = 10b. The behaviour of dislocations 
in a disordered alloy is also represented for 
comparison. Comparison of Figs. 6 and 4 show 
that with a decrease of  the vertical separation, 
superlattice dislocations tend to behave as 
ordinary dislocations. At infinite friction, how- 
ever, the behaviour of  dislocations in both alloys, 
is identical. 
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Figure 7 Variation of the maximum elastic force due to 
internal stress with frictional stress on passing dis- 
locations in ordered and disordered alloys. 

The behaviour of  superlattice dislocations for 
y = 5 and 4b is represented in Fig. 7. Again, 
the behaviour of  ordinary dislocations is repre- 
sented by dotted lines for comparison. I t  is 
interesting to note  that at very low frictional 
stresses the maximum elastic force for one and 
two pairs of  ordinary dislocations is greater than 
that for a pair of  saperlattice dislocations. Hence, 
7 causes weakening instead of strengthening at 
low frictional stress and low y. The lower 
elastic force for two pairs of  ordinary disloca- 
tions, in comparison to that of  one pair of  
ordinary dislocations, was accounted for earlier 
[13] as due to the contribution f rom the repul- 
sive force of  the inner dipole to the applied 
stress in breaking the outer dipole. The same 
reasoning holds good for the case of  super- 
lattice dislocations. The maximum force occurs 
when partials 1 and 3 break away and before 
the complete splitting occurs. Because of the 
presence of 7, dislocations 1 and 2 are more 
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closely spaced than when 7 = 0. Hence, the 
contribution f rom the repulsive force due to 
inner dipoles is larger than that in the case of  
disordered alloys, thus, accounting for the lower 
elastic force for superlattice dislocations. An 
essential difference between the superlattice 
dislocations and the ordinary dislocations, 
however, is that superlattice dislocations pass 
as an array despite some amount of  stacking, 
while for disordered alloys, dislocations split 
f rom the array for all vertical separations. 
Dislocation splitting in ordered alloys may be 
observed for very small y at low frictional 
stresses. 

It  is next of interest to study the variation of  
the maximum elastic force as a function of y 
at a constant frictional stress. This is repre- 
sented in Fig. 8 when the maximum elastic 
force is plotted as a function of log (y/b). 
Calculations are done at a constant friction 
stress, ~-f = 45, corresponding to the yield 
stress of  an ordered FeCo alloy [17] and the 
magnitude of ~-f is much smaller than ~,, the 
APB energy. Fig. 8 shows that except at very 
small y, the maximum elastic force for super- 
lattice dislocations is greater than that for 
ordinary dislocations. At large y, similar to the 
case at large friction, the behaviour of ordinary 
dislocations and superlattice dislocations is 
identical. At very small y, however, the maxi- 
mum elastic force for superlattice dislocations 
is less than that of  ordinary dislocations and 
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Figure 8 Variation of the maximum elastic force as a 
function of y for passing dislocations in ordered and 
disordered alloys. 
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the reason for this lower force has been accounted 
for earlier. 

It was also argued earlier [13] that high 
work-hardening in ordered alloys arises due to 
two factors; an increased dipole strength and a 
reduced cross-slip activity. Since the frictional 
stress is very small in comparison with a dipole 
strength, the strengthening by increasing the 
number of passing superlattice dislocations is 
possible only at large y [13]. At smaller y, less 
than 250b; i.e., when the dipole strength of a 
superlattice dislocation is greater than rf, the 
passing stress is essentially controlled by the 
dipole strength (Fig. 8). However, as y decreases, 
corresponding to an increase in strain, the 
density of cross-slip sites also increases. 

3 ~ 1 7 6 1 7 6  ~ . . . . . . .  ~ - , . . . . . .  
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Figure 9 Variation of the maximum cross-slip force on 
superlattice dislocations as a function of y. 

Fig. 9 shows the variation of the maximum 
cross-slip force for a superlattice dislocation 
as a function of y. It is important to notice that 
the cross-slip force at a given y is nearly two 
times greater than the corresponding maximum 
elastic force on the slip plane (Fig. 8). The value 
of yll0 and Yn2 of FeCo is also represented in 
Fig. 8. If {110} is a slip plane and {112} a 
cross-slip plane, superlattice dislocations are 
able to cross-slip non-thermally if the vertical 
separation is less than Ye (Fig. 9) where the 

cross-slip force for y less than Ye is greater than 
yAPB. 

The cross-slip on planes other than {1 12} 
could also be considered. In such cases the 
component of cross-slip force (Fig. 9) on the 
given plane has to be equated to the correspond- 
ing APB on that plane to determine Ye. From 
Fig. 8 the maximum elastic force on the slip 
plane for y = Ye is represented by rmax. The 
significance of r m a x  in Fig. 8 is that it repre- 
sents the maximum strengthening that can be 
obtained by passing superlattice screw disloca- 
tions. If the vertical spacing is less than or 
equal to Ye, a spontaneous cross-slip occurs 
leading to annihilation of passing dislocations. 
This spontaneous cross-slip will be referred to 
as non-thermal cross-slip since for y ~< ye, there 
may not be a thermal energy barrier for cross- 
slip. For y greater than Ye, however, cross- 
slip could be thermally activated with internal 
stress (cross-slip force) aiding the activation 
process. Since the contribution to the activation 
energy from the cross-slip force due to internal 
stress is a function of y, it follows that the activa- 
tion energy for cross-slip should be a function 
of y, or in turn, should be a function of strain. 
Since a decrease in y is related to an increase 
in strain the activation energy for cross-slip 
should decrease with the increase in strain. Also, 
rmax in Fig. 8 is nearly half of yAP~ implying 
that screw dislocations will annihilate them- 
selves before they can split giving rise to full 
APB. Also, cross-slip could take place on planes 
belonging to (1 1 1) zone even without con- 
stricting into a perfect dislocation as in Schoeck 
and Seeger's model [18]. Instead, the leading 
partials can cross-slip independently with the 
aid of the internal stress, while the APB tension 
pulls the other partial with it. Consistent with 
the above arguments is the fact that with an 
increase of y (APB), ~nI, corresponding to the 
onset of stage III, increases [17] and this is 
contrary to that expected from the constric- 
tion model. Figs. 8 and 9, however, show that 
with an increase of Y, ye decreases and, hence, 
rm~x increases implying that larger stresses are 
reached before non-thermal cross-slip takes 
place. The same conclusion holds good for 
thermal cross-slip, implying that higher internal 
stresses are needed before cross-slip can be 
thermally activated, thus accounting for the 
increase of ~m with 7. However, if y is very 
high as in/3-brass [19], the partials in a super- 
lattice dislocation are so close that Seeger's 
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constriction model may be applicable for cross- 
slip. In such cases, the cross-slip force due to 
internal stress will be effective after the con- 
striction has taken place. 

The analysis thus far applies only to passing 
screw dislocations. It was shown earlier that the 
passing behaviour of edge dislocations is some- 
what similar to that of screw dislocation but 
more complicated [10]. Even for edge disloca- 
tions, the dipole strength increases with a de- 
crease of y. Unlike the case for screw disloca- 
tions, however, non-thermal recovery leading to 
annihilation is very difficult for edge disloca- 
tions. Though climb force due to internal stresses 
on edge dislocations increases with decrease 
of  y, stresses of the order of theoretical elastic 
limit have to be reached before non-thermal 
climb can occur, since it involves the creation 
of point defects [20]. For  ordered alloys, the 
energy needed for climb will be much more 
since it involves the creation of non-shear 
antiphase boundaries [21]. The suppression of 
climb processes for passing edge dislocation 
implys that very small values o f y  can be reached 
with increasing strain, and for such small y 
values, splitting of partials can occur in pre- 
ference to dipole breaking. At this stage, it is 
not quite clear what the relative contributions 
from passing screw and edge dislocations to 
the total work-hardening in ordered alloys is, 
and this has to await further study. 

As mentioned earlier only infinite straight 
dislocations are considered in the present cal- 
culations. The passing dislocations could also 
have kinks along their length, however, the 
passing stress may not be affected to any signi- 
ficant extent since the kinks have no long range 
stress fields [21]. The passing stress may be 
affected by the presence of kinks if the separa- 
tion between the passing dislocations is com- 
parable to the spacing of the kinks. On the other 
hand, when the separation between the passing 
dislocations is that small, there will be large 
internal stresses on each dislocation and the 
equilibrium configuration of the kinks in the 
presence of  such high internal stresses is not yet 
understood. Furthermore, the infinite disloca- 
tion approximation may not be a realistic 
description in such a situation. 

4. Summary and conclusions 
A detailed analysis of the behaviour of passing 
superlattice screw dislocations is presented and 
the results are compared with that of ordinary 
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dislocations. In particular, it was shown that the 
behaviour of superlattice dislocations is similar 
to that of ordinary dislocations at very high 
frictional stresses, as well as at very low vertical 
separations. However, with the decrease of y, 
or in turn, with the increase of strain, the cross- 
slip force on passing dislocations also increases 
to an extent that non-thermal cross-slip can 
occur annihilating the passing dislocations. Thus, 
the stress induced recovery will set a limit for  
the maximum work-hardening that can be 
reached by passing screw dislocations. On the 
other hand, such annihilation is practically 
impossible for passing edge dislocations since 
it involves climb processes. Hence, the vertical 
separation, y, can decrease with strain for pas- 
sing edge dislocations to a limit where splitting 
of superlattice dislocations can occur in pre- 
ference to dipole breaking. Although the above 
calculations were done specifically for the FeCo 
alloys, the results of this analysis are quite 
general and should be applicable to all B2 
alloys. Also, the calculations have considered 
the frictional stress as a phenomological con- 
stant and was associated with lattice frictional 
forces. The analysis, however, can be more 
general since it is valid for any type of frictional 
forces that offer resistance to the motion of  
dislocations. For  example, frictional forces 
could be drag forces induced by jogs on the pas- 
sing dislocations and in such cases the magni- 
tude of the frictional force could be a function 
of strain. 
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